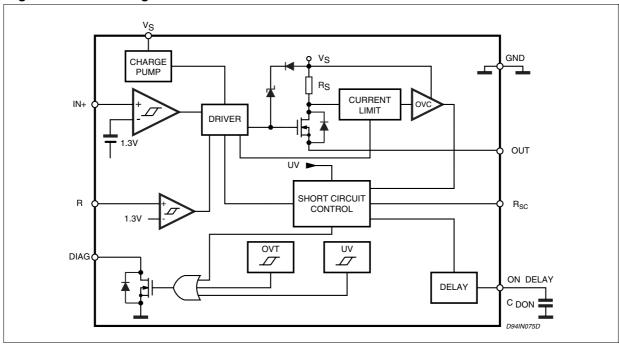


0.5 A high-side driver quad intelligent power switch

Features

- Multipower BCD technology
- 0.5 A output current
- 8 to 35 V supply voltage range
- Externally programmable current limit
- Non-dissipative over-current protection
- Thermal shutdown
- Under voltage lockout with hysteresys
- Diagnostic output for under voltage, over temperature and over current
- External asynchronous reset input
- Presettable delay for overcurrent diagnostic
- Open ground protection
- Protection against surge transient (IEC 61000-4-5)
- Immunity against burst transient (IEC 61000-4-4)


Description

This device is a monolithic intelligent power switch in multipower BCD technology for driving inductive, capacitive or resistive loads. Diagnostic for CPU feedback and extensive use of electrical protections make this device inherently indistructible and suitable for general purpose industrial applications.

Table 1. Device summary

Order codes	Package	Packaging
L6377D	SO-14	Tube
L6377D013TR	SO-14	Tape and reel

Figure 1. Block diagram

Contents L6377

Contents

1	Maximum rating 3
	1.1 Absolute maximum ratings
	1.2 Thermal data 3
2	Pin connections
3	Electrical characteristics5
4	Input section
5	Over temperature protection (OVT) 8
6	Under voltage protection (UV)8
7	Over current operation9
8	Demagnetisation of inductive loads
9	Package mechanical data 13
10	Revision history

L6377 Maximum rating

1 Maximum rating

1.1 Absolute maximum ratings

Table 2. Absolute maximum ratings

Symbol	Pin	Parameter	Value	Unit
V	4	Supply voltage (tw ≤ 10 ms)	50	V
V_s	4	Supply voltage (DC)	40	V
V _s - V _{out}	4 vs 3	Supply to output differential voltage	internally limited	
V _{od}	10	Externally forced voltage	-0.3 to 7	V
I _{od}	10	Externally forced current	±1	mA
I _{RESET}	5	Reset input current (forced)	±2	mA
V _{RESET}	5	Reset input voltage	-0.3 to 40	V
l _{out}		Output current (see also Isc)	internally limited	
V _{out}	3	Output voltage	internally limited	
Eil		Total energy inductive load (T _J = 125 °C)	50	mJ
P _{tot}		Power dissipation	internally limited	
V _{diag}	11	External voltage	-0.3 to 40	V
I _{diag}	''	Externally forced current	-10 to 10	mA
l _i	12	Input current	20	mA
V _i	12	Input voltage	-10 to V _s +0.3	V
T _{op}		Ambient temperature, operating range	-25 to 85	°C
T _J		Junction temperature, operating range (see overtemperature protection)	-25 to 125	°C
T _{stg}		Storage temperature	-55 to 150	°C

1.2 Thermal data

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thJA}	Thermal resistance, junction to ambient (max)	150	°C/W

3/16

Pin connections L6377

2 Pin connections

Figure 2. Pin connections (top view)

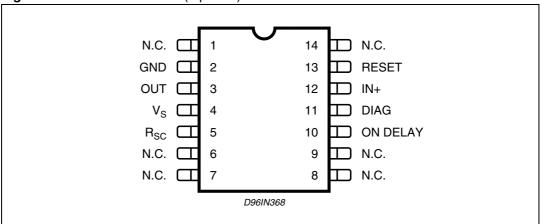


Table 4. Pin description

N#	Pin name	Function			
1, 6, 7, 8, 9, 14	N.C.	Not connected			
2	GND	round pin			
3	OUT	ligh side output. Controlled output with current limitation			
4	Vs	Supply voltage. Range with under voltage monitoring			
5	Rsc	Current limiting setting			
10	ON DELAY	DELAY Delay setting for overcurrent diagnostic			
11	DIAG Diagnostic open drain output for over temperature, under voltage and overcurrent				
12	IN+	Comparator non inverting input			
13	RESET	Asynchronous reset input			

3 Electrical characteristics

Table 5. Electrical characteristcs $(V_s = 24 \text{ V}; T_J = -25 \text{ to } 125 \text{ °C}; \text{ unless otherwise specified.})$

Symbol	Pin	Parameter	Test condition	Min	Тур	Max	Unit
DC opera	DC operation						
V _{smin}		Supply voltage for valid diagnostic	$I_{diag} \ge 0.5 \text{ mA};$ $V_{diag} = 1.5 \text{ V};$	4		35	V
V _s		Operative supply voltage		8	24	35	V
V _{sth}	4	Under voltage lower threshold		7		8	٧
V _{shys}		Under voltage hysteresis		300	500	700	mV
Iq		Quiescent current	Output open		800		μΑ
I _{qo}		Quiescent current	Output on		1.6		mA
V _{ith}		Input threshold voltage		0.8	1.3	2	V
V _{iths}		Input threshold hysteresis		50		400	mV
V _{il}	12	Input low level voltage		-7		0.8	V
V _{ih}	12	Input high level voltage	V _s < 18 V	2		V _s -3	V
			V _s > 18 V	2		15	٧
I _{ib}		Input bias current	V _i = -7 to 15 V	-250		250	μΑ
V _{rth}		Reset threshold voltage		0.8	1.3	2	V
V_{rl}	13	Reset low level voltage		0		0.8	٧
V _{rh}	13	Reset high level voltage		2		40	V
I _{rb}		Reset pull down current			5		μΑ
I _{dch}	10	Delay capacitor charging current	ON delay pin shorted to Ground		2.5		μΑ
V _{rsc}	5	Output voltage on R _{sc} pin	R _{sc} pin floating		1.25		V
I _{rsc}	5	Output current on R _{sc} pin	R _{sc} pin shorted to GND			300	μΑ
I _{dlkg}	11	Diagnostic output leakage current	Diagnostic off			25	μΑ
V _{diag}		Diagnostic output voltage drop	I _{diag} = 5 mA;			1.5	V

Electrical characteristics L6377

Table 5. Electrical characteristcs (continued) $(V_s = 24 \text{ V}; T_J = -25 \text{ to } 125 \text{ °C}; \text{ unless otherwise specified.})$

Symbol	Pin	Parameter	Test condition	Min	Тур	Max	Unit
V_{don}		Output voltage drop	I_{out} = 625 mA; T_J = 25 °C		250	350	mV
			I _{out} = 625 mA; T _J = 125 °C		400	550	mV
l _{olk}		Output leakage current	V _i = LOW; V _{out} = 0			100	μА
V _{ol}		Output low state voltage	V _i = HIGH; pin floating		0.8	1.5	V
V _{cl}	3	Internal voltage clamp (V_s - V_{out})	I _o = 200 mA single pulsed =300ms	48	53	58	V
		Chart aireuit autaut aurrant	$V_{s} = 8 \text{ to } 35 \text{ V}; \text{ R}_{l} = 2 \Omega; \\ R_{sc} = 5 \text{ to } 30 \text{ K}\Omega$ $5/R_{sc} = R_{sc}$		R _{sc} = K	= KΩ A	
I _{sc}		Short circuit output current	$V_s = 8 \text{ to } 35 \text{ V};$ $R_l = 2 \Omega; R_{sc} < 5 \text{ K}\Omega$	0.75	1.1	1.5	А
T _{max}		Over temperature upper threshold			150		°C
T _{hys}		Over temperature hysteresis			20		°C
AC oper	ation						
t _r -t _f	3	Rise or fall time	$V_s = 24 \text{ V}; R_l = 70 \Omega$ $R_l \text{ to ground}$		20		μS
t _d		Delay time			5		μS
dV/dt		Slew rate (rise and fall edge)	$V_s = 24 \text{ V}; R_l = 70 \Omega$ R _l to ground	0.7	1	1.5	V/μs
t _{ON}	10	On time during short circuit condition	50 pF < C _{DON} < 2 nF		1.28		μs/pF
t _{OFF}		Off time during short circuit condition			64		t _{ON}
f _{max}		Maximum operating frequency			25		kHz
Source o	drain	NDMOS diode					
V _{fsd}		Forward on voltage	I _{fsd} = 625 mA		1	1.5	V
I _{fp}		Forward peak current	t _p = 10 ms; duty cycle = 20 %			1.5	Α
t _{rr}		Reverse recovery time	I_{fsd} = 500 mA; dI_{fsd}/dt = 25 A/ μ s		200		ns
t _{fr}		Forward recovery time			50		ns

Figure 3. Undervoltage comparator hysteresis

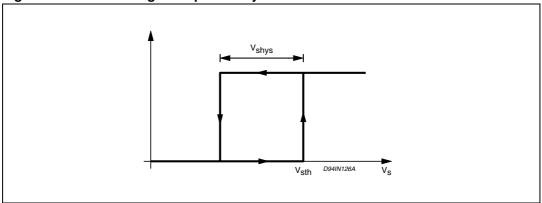
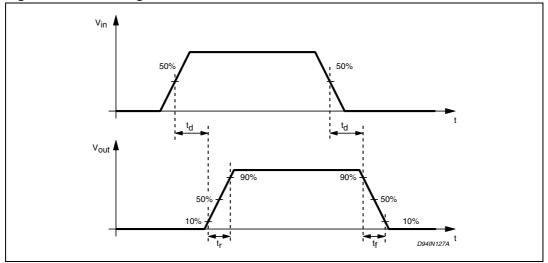



Figure 4. Switching waveforms

Input section L6377

4 Input section

An Input and Asynchronous RESET, both TTL/CMOS compatible with wide voltage range and high noise immunity (thanks to a built in hysteresis) are available.

5 Over temperature protection (OVT)

An on-chip Over Temperature Protection provides an excellent protection of the device in extreme conditions. Whenever the temperature - measured on a central portion of the chip-exceeds T_{max} =150 °C (typical value) the device is shut off, and the DIAG output goes LOW.

Normal operation is resumed as the chip temperature (normally after few seconds) falls below T_{max} - T_{hys} = 130 °C (typical value). The hysteresis avoid thats an intermittent behaviour take place.

6 Under voltage protection (UV)

The supply voltage is expected to range from 8 to 35 V. In this range the device operates correctly. Below 8V the overall system has to be considered not reliable. To avoid any misfunctioning the supply voltage is continuously monitored to provide an under voltage protection. As V_s falls below V_{sth} - V_{shys} (typically 7.5 V, see fig. 4) the output power MOS is switched off and DIAG output goes LOW. Normal operation is resumed as soon as V_s exceeds V_{sth} . The hysteretic behaviour prevents intermittent operation at low supply voltage.

7 Over current operation

In order to implement a short circuit protection the output power MOS is driven in linear mode to limit the output current to the lsc value. This I_{SC} limit is externally settable by means of an external 1/4 W resistor connected from R_{SC} pin and GND. The value of the resistor must be chosen according to the following formula:

$$I_{sc}(A) = 5/R_{sc}(k\Omega)$$

with

$$5 < R_{sc} < 30 (k\Omega)$$

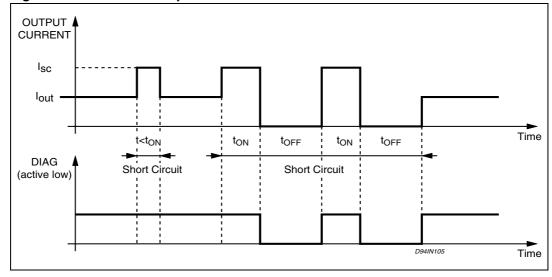
For

$$R_{sc} < 5 (k\Omega)$$

 I_{sc} is limited to $I_{sc} = 1.1$ A (typical value).

This condition (current limited to the Isc value) lasts for a Ton time interval, that can be set by means of a capacitor (C_{DON}) connected to the ON DELAY pin according to the following formula:

$$t_{ON} = 1.28 \,\mu s/pF$$


for

$$50 \text{ pF} < C_{DON} < 2 \text{ nF}$$

After the t_{on} interval has expired the output power MOS is switched off for the t_{OFF} time interval with:

$$t_{OFF} = 64 t_{ON}$$

Figure 5. Short circuit operation waveforms

When also the t_{OFF} interval has expired, the output power MOS is switched ON.

Now two conditions may occur

- the overload is still present. In this case the output power MOS is again driven in linear mode (limiting the output current to I_{sc}) for another t_{ON}, starting a new cycle, or
- the overload condition is removed, and the output power MOS is no longer driven in linear mode.

All these occurrences are presented on the DIAG pin (see fig 5). We call this unique feature non dissipative short circuit protection and it ensures a very safe operation even in permanent overload conditions. Note that, of course, choosing the most appropriate value for the $t_{\rm ON}$ interval (i.e. the value of the $C_{\rm DON}$ capacitor) a delay (the $t_{\rm ON}$ itself) will prevent that a misleading Short Circuit information is presented on the DIAG output, when driving capacitive loads (that acts like short circuit in the very beginning) or Incandescent Lamp (a cold filament has a very low resistive value).

The non dissipative short circuit protection can be disabled (keeping $t_{ON} = 0$ but with the output current still limited to Isc, and Diagnostic disabled) simply shorting to ground the the ON DELAY pin.

8 Demagnetisation of inductive loads

The L6377 has an internal clamping zener diode able to demagnetise inductive loads. Note that the limitation comes from the peak power that the package can handle. Attention must be paid to a proper thermal design of the board. If, for whatever reason (load current or inductive value too big) the peak power dissipation is too high, an external Zener plus Diode arrangement, can perform a demagnetisation versus Ground or versus V_s (see fig 5 and 6). The breakdown voltage of the external Zener Diode must be chosen considering the internal clamping voltage (V_c) and the supply voltage (V_s) according to:

$$V_z < V_{cl(min)} - V_{s(max)}$$

for demagnetisation versus ground or

$$V_{s(max)} < V_z < V_{cl(min)}$$

for demagnetisation versus V_s.

Figure 6. Input comparator hysteresis

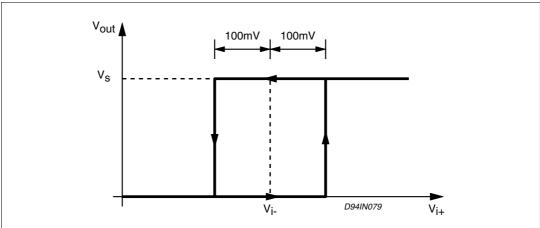
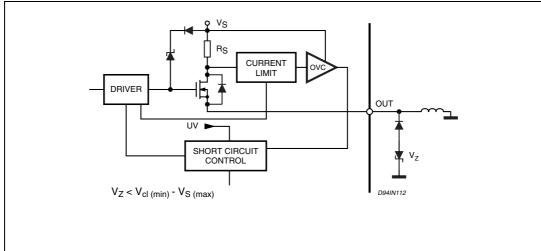



Figure 7. External demagnetisation circuit (versus ground)

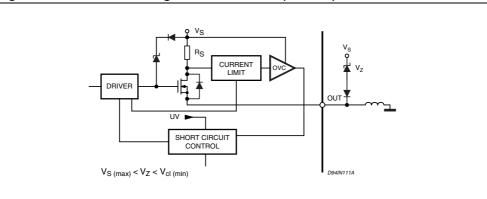
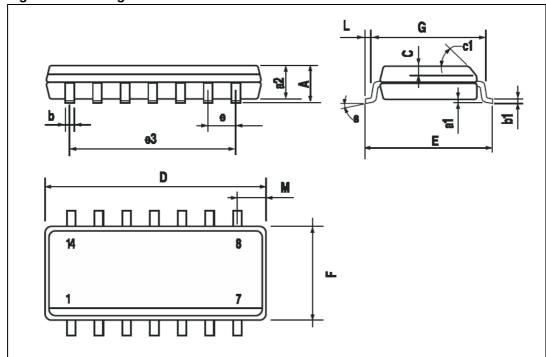


Figure 8. External demagnetisation circuit (versus)


9 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

Table 6. SO-14 mechanical data

Table 0.	OO-14 IIICCIII	arrioar data					
Dim		mm inch			inch	ch	
Dim.	Min	Тур	Max	Min	Тур	Max	
Α			1.75			0.069	
a1	0.1		0.25	0.004		0.009	
a2			1.6			0.063	
b	0.35		0.46	0.014		0.018	
b1	0.19		0.25	0.007		0.010	
С		0.5			0.020		
c1		,	45°	(typ.)	,		
D (1)	8.55		8.75	0.336		0.344	
Е	5.8		6.2	0.228		0.244	
е		1.27			0.050		
еЗ		7.62			0.300		
F (1)	3.8		4	0.150		0.157	
G	4.6		5.3	0.181		0.209	
L	0.4		1.27	0.016		0.050	
М			0.68			0.027	
S		8° (max.)					

Figure 9. Package dimensions

L6377 Revision history

10 Revision history

Table 7. Document revision history

Date	Revision	Changes
August 2001	3	First Issue in EDOCS dms
25-Feb-2008	4	Modified: Removed obsolete package DIP-14

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

